Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.490
Filter
1.
Curr Microbiol ; 81(5): 125, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38558085

ABSTRACT

More than half of the world's population is infected with Helicobacter pylori (H. pylori), which may lead to chronic gastritis, peptic ulcers, and stomach cancer. LeoA, a conserved antigen of H. pylori, aids in preventing this infection by triggering specific CD3+ T-cell responses. In this study, recombinant plasmids containing the LeoA gene of H. pylori are created and conjugated with chitosan nanoparticle (CSNP) to immunize BALB/c mice against the H. pylori infection. We used the online Vaxign tool to analyze the genomes of five distinct strains of H. pylori, and we chose the outer membrane as a prospective vaccine candidate. Afterward, the proteins' immunogenicity was evaluated. The DNA vaccine was constructed and then encapsulated in CSNPs. The effectiveness of the vaccine's immunoprotective effects was evaluated in BALB/c mice. Purified activated splenic CD3+ T cells are used to test the anticancer effects in vitro. Nanovaccines had apparent spherical forms, were small (mean size, 150-250 nm), and positively charged (41.3 ± 3.11 mV). A consistently delayed release pattern and an entrapment efficiency (73.35 ± 3.48%) could be established. Compared to the non-encapsulated DNA vaccine, vaccinated BALB/c mice produced higher amounts of LeoA-specific IgG in plasma and TNF-α in splenocyte lysate. Moreover, BALB/c mice inoculated with nanovaccine demonstrated considerable immunity (87.5%) against the H. pylori challenge and reduced stomach injury and bacterial burdens in the stomach. The immunological state in individuals with GC with chronic infection with H. pylori is mimicked by the H. pylori DNA nanovaccines by inducing a shift from Th1 to Th2 in the response. In vitro human GC cell development is inhibited by activated CD3+ T lymphocytes. According to our findings, the H. pylori vaccine-activated CD3+ has potential immunotherapeutic benefits.


Subject(s)
Chitosan , Helicobacter Infections , Helicobacter pylori , Nanoparticles , Vaccines, DNA , Humans , Animals , Mice , Helicobacter pylori/genetics , Vaccines, DNA/genetics , DNA , Vaccination , Helicobacter Infections/prevention & control , Helicobacter Infections/microbiology , Bacterial Vaccines/genetics , Mice, Inbred BALB C , Antibodies, Bacterial
2.
Front Cell Infect Microbiol ; 14: 1377077, 2024.
Article in English | MEDLINE | ID: mdl-38572314

ABSTRACT

Introduction: The pathogenic bacterium Helicobacter pylori has evolved glycan-mediated mechanisms to evade host immune defenses. This study tests the hypothesis that genetic disruption of H. pylori glycan biosynthesis alters immune recognition and response by human gastric epithelial cells and monocyte-derived dendritic cells. Methods: To test this hypothesis, human cell lines were challenged with wildtype H. pylori alongside an array of H. pylori glycosylation mutants. The relative levels of immune response were measured via immature dendritic cell maturation and cytokine secretion. Results: Our findings indicate that disruption of lipopolysaccharide biosynthesis diminishes gastric cytokine production, without disrupting dendritic cell recognition and activation. In contrast, variable immune responses were observed in protein glycosylation mutants which prompted us to test the hypothesis that phase variation plays a role in regulating bacterial cell surface glycosylation and subsequent immune recognition. Lewis antigen presentation does not correlate with extent of immune response, while the extent of lipopolysaccharide O-antigen elaboration does. Discussion: The outcomes of this study demonstrate that H. pylori glycans modulate the host immune response. This work provides a foundation to pursue immune-based tailoring of bacterial glycans towards modulating immunogenicity of microbial pathogens.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Humans , Helicobacter pylori/genetics , Lipopolysaccharides/metabolism , Stomach/pathology , Polysaccharides/metabolism , Cytokines/metabolism , Helicobacter Infections/microbiology , Gastric Mucosa/microbiology
3.
Curr Microbiol ; 81(6): 154, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652129

ABSTRACT

Helicobacter pylori, a member of the clade campylobacteria, is the leading cause of chronic gastritis and gastric cancer. Virulence and antibiotic resistance of H. pylori are of great concern to public health. However, the relationship between virulence and antibiotic resistance genes in H. pylori in relation to other campylobacteria remains unclear. Using the virulence and comprehensive antibiotic resistance databases, we explored all available 354 complete genomes of H. pylori and compared it with 90 species of campylobacteria for virulence and antibiotic resistance genes/proteins. On average, H. pylori had 129 virulence genes, highest among Helicobacter spp. and 71 antibiotic resistance genes, one of the lowest among campylobacteria. Just 2.6% of virulence genes were shared by all campylobacterial members, whereas 9.4% were unique to H. pylori. The cytotoxin-associated genes (cags) seemed to be exclusive to H. pylori. Majority of the isolates from Asia and South America were cag2-negative and many antibiotic resistance genes showed isolate-specific patterns of occurrence. Just 15 (8.8%) antibiotic resistance genes, but 103 (66%) virulence genes including 25 cags were proteomically identified in H. pylori. Arcobacterial members showed large variation in the number of antibiotic resistance genes and there was a positive relation with the genome size. Large repository of antibiotic resistance genes in campylobacteria and a unique set of virulence genes might have important implications in shaping the course of virulence and antibiotic resistance in H. pylori.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Helicobacter pylori , Virulence Factors , Helicobacter pylori/genetics , Helicobacter pylori/drug effects , Helicobacter pylori/pathogenicity , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Virulence/genetics , Virulence Factors/genetics , Bacterial Proteins/genetics , Genome, Bacterial , Helicobacter Infections/microbiology , Humans
4.
PLoS One ; 19(4): e0300696, 2024.
Article in English | MEDLINE | ID: mdl-38603679

ABSTRACT

The primary treatment method for eradicating Helicobacter pylori (H. pylori) infection involves the use of antibiotic-based therapies. Due to the growing antibiotic resistance of H. pylori, there has been a surge of interest in exploring alternative therapies. Cetylpyridinium chloride (CPC) is a water-soluble and nonvolatile quaternary ammonium compound with exceptional broad-spectrum antibacterial properties. To date, there is no documented or described specific antibacterial action of CPC against H. pylori. Therefore, this study aimed to explore the in vitro activity of CPC against H. pylori and its potential antibacterial mechanism. CPC exhibited significant in vitro activity against H. pylori, with MICs ranging from 0.16 to 0.62 µg/mL and MBCs ranging from 0.31 to 1.24 µg/mL. CPC could result in morphological and physiological modifications in H. pylori, leading to the suppression of virulence and adherence genes expression, including flaA, flaB, babB, alpA, alpB, ureE, and ureF, and inhibition of urease activity. CPC has demonstrated in vitro activity against H. pylori by inhibiting its growth, inducing damage to the bacterial structure, reducing virulence and adherence factors expression, and inhibiting urease activity.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Humans , Helicobacter pylori/genetics , Cetylpyridinium/pharmacology , Urease/genetics , Helicobacter Infections/microbiology , Anti-Bacterial Agents/pharmacology
5.
Biosens Bioelectron ; 256: 116282, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38626615

ABSTRACT

Helicobacter pylori (H. pylori) infection correlates closely with gastric diseases such as gastritis, ulcers, and cancer, influencing more than half of the world's population. Establishing a rapid, precise, and automated platform for H. pylori diagnosis is an urgent clinical need and would significantly benefit therapeutic intervention. Recombinase polymerase amplification (RPA)-CRISPR recently emerged as a promising molecular diagnostic assay due to its rapid detection capability, high specificity, and mild reaction conditions. In this work, we adapted the RPA-CRISPR assay on a digital microfluidics (DMF) system for automated H. pylori detection and genotyping. The system can achieve multi-target parallel detection of H. pylori nucleotide conservative genes (ureB) and virulence genes (cagA and vacA) across different samples within 30 min, exhibiting a detection limit of 10 copies/rxn and no false positives. We further conducted tests on 80 clinical saliva samples and compared the results with those derived from real-time quantitative polymerase chain reaction, demonstrating 100% diagnostic sensitivity and specificity for the RPA-CRISPR/DMF method. By automating the assay process on a single chip, the DMF system can significantly reduce the usage of reagents and samples, minimize the cross-contamination effect, and shorten the reaction time, with the additional benefit of losing the chance of experiment failure/inconsistency due to manual operations. The DMF system together with the RPA-CRISPR assay can be used for early detection and genotyping of H. pylori with high sensitivity and specificity, and has the potential to become a universal molecular diagnostic platform.


Subject(s)
Biosensing Techniques , Genotyping Techniques , Helicobacter Infections , Helicobacter pylori , Helicobacter pylori/genetics , Helicobacter pylori/isolation & purification , Humans , Helicobacter Infections/diagnosis , Helicobacter Infections/microbiology , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Genotyping Techniques/instrumentation , Genotyping Techniques/methods , Genotype , Bacterial Proteins/genetics , Nucleic Acid Amplification Techniques/methods , Nucleic Acid Amplification Techniques/instrumentation , Microfluidics/methods , Antigens, Bacterial/genetics , Antigens, Bacterial/analysis , DNA, Bacterial/genetics , DNA, Bacterial/analysis , DNA, Bacterial/isolation & purification , Recombinases/metabolism
6.
Front Cell Infect Microbiol ; 14: 1343499, 2024.
Article in English | MEDLINE | ID: mdl-38558850

ABSTRACT

Background: Observational studies have reported that Helicobacter pylori (H. pylori) infection is associated with a series of pregnancy and neonatal outcomes. However, the results have been inconsistent, and the causal effect is unknown. Methods: A two-sample Mendelian randomization (MR) study was performed using summary-level statistics for anti-H. pylori IgG levels from the Avon Longitudinal Study of Parents and Children Cohort. Outcome data for pregnancy (miscarriage, preeclampsia-eclampsia, gestational diabetes mellitus, placental abruption, premature rupture of membranes, postpartum hemorrhage) and neonates (birthweight, gestational age, and preterm birth) were sourced from genome-wide association meta-analysis as well as the FinnGen and Early Growth Genetics Consortium. Causal estimates were calculated by five methods including inverse variance weighted (IVW). The heterogeneity of instrumental variables was quantified by Cochran's Q test, while sensitivity analyses were performed via MR-Egger, MR-PRESSO, and leave-one-out tests. Results: IVW estimates suggested that genetically predicted anti-H. pylori IgG levels were significantly associated with increased risks of preeclampsia-eclampsia (odds ratio [OR] = 1.12, 95% confidence interval [CI] 1.01-1.24, P = 0.026) and premature rupture of membranes (OR = 1.17, 95% CI 1.05-1.30, P = 0.004). Similar results were obtained for preeclampsia-eclampsia from the MR-Egger method (OR = 1.32, 95% CI 1.06-1.64, P = 0.027) and for premature rupture of membranes from the weighted median method (OR = 1.22, 95% CI 1.06-1.41, P = 0.006). No significant causal effects were found for other outcomes. There was no obvious heterogeneity and horizontal pleiotropy across the MR analysis. Conclusion: Our two-sample MR study demonstrated a causal relationship of H. pylori infection with preeclampsia-eclampsia and premature rupture of membranes. The findings confirm the epidemiological evidence on the adverse impact of H. pylori in pregnancy. Further studies are needed to elucidate the pathophysiological mechanisms and assess the effectiveness of pre-pregnancy screening and preventive eradication.


Subject(s)
Eclampsia , Helicobacter Infections , Helicobacter pylori , Pre-Eclampsia , Premature Birth , Female , Humans , Infant, Newborn , Pregnancy , Antibodies, Bacterial , Genome-Wide Association Study , Helicobacter Infections/complications , Helicobacter pylori/genetics , Immunoglobulin G , Longitudinal Studies , Mendelian Randomization Analysis , Placenta , Pre-Eclampsia/epidemiology , Pre-Eclampsia/genetics , Premature Birth/epidemiology , Meta-Analysis as Topic
7.
Helicobacter ; 29(2): e13074, 2024.
Article in English | MEDLINE | ID: mdl-38615332

ABSTRACT

BACKGROUND: Helicobacter pylori is considered a true human pathogen for which rising drug resistance constitutes a drastic concern globally. The present study aimed to reconstruct a genome-scale metabolic model (GSMM) to decipher the metabolic capability of H. pylori strains in response to clarithromycin and rifampicin along with identification of novel drug targets. MATERIALS AND METHODS: The iIT341 model of H. pylori was updated based on genome annotation data, and biochemical knowledge from literature and databases. Context-specific models were generated by integrating the transcriptomic data of clarithromycin and rifampicin resistance into the model. Flux balance analysis was employed for identifying essential genes in each strain, which were further prioritized upon being nonhomologs to humans, virulence factor analysis, druggability, and broad-spectrum analysis. Additionally, metabolic differences between sensitive and resistant strains were also investigated based on flux variability analysis and pathway enrichment analysis of transcriptomic data. RESULTS: The reconstructed GSMM was named as HpM485 model. Pathway enrichment and flux variability analyses demonstrated reduced activity in the ribosomal pathway in both clarithromycin- and rifampicin-resistant strains. Also, a significant decrease was detected in the activity of metabolic pathways of clarithromycin-resistant strain. Moreover, 23 and 16 essential genes were exclusively detected in clarithromycin- and rifampicin-resistant strains, respectively. Based on prioritization analysis, cyclopropane fatty acid synthase and phosphoenolpyruvate synthase were identified as putative drug targets in clarithromycin- and rifampicin-resistant strains, respectively. CONCLUSIONS: We present a robust and reliable metabolic model of H. pylori. This model can predict novel drug targets to combat drug resistance and explore the metabolic capability of H. pylori in various conditions.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Humans , Helicobacter pylori/genetics , Clarithromycin/pharmacology , Rifampin/pharmacology , Helicobacter Infections/drug therapy , Databases, Factual
8.
Helicobacter ; 29(2): e13062, 2024.
Article in English | MEDLINE | ID: mdl-38459683

ABSTRACT

BACKGROUND: Clarithromycin (CAM) resistance is a major contributor to the failure to eradicate Helicobacter pylori (H. pylori). The mixed-infection ratio of CAM-susceptible and CAM-resistant H. pylori strains differs among individuals. Pyrosequencing analysis can be used to quantify gene mutations at position each 2142 and 2143 of the H. pylori 23S rRNA gene in intragastric fluid samples. Herein, we aimed to clarify the impact of the rate of mixed infection with CAM-susceptible and CAM-resistant H. pylori strains on the success rate of CAM-containing eradication therapy. MATERIALS AND METHODS: Sixty-four H. pylori-positive participants who received CAM-based eradication therapy, also comprising vonoprazan and amoxicillin, were enrolled in this prospective cohort study. Biopsy and intragastric fluid samples were collected during esophagogastroduodenoscopy. H. pylori culture and CAM-susceptibility tests were performed on the biopsy samples, and real-time PCR and pyrosequencing analyses were performed on the intragastric fluid samples. The mutation rates and eradication success rates were compared. RESULTS: The overall CAM-based eradication success rate was 84% (54/64): 62% (13/21) for CAM-resistant strains, and 95% (39/41) for CAM-sensitive strains. When the mutation rate of the 23S rRNA gene was 20% or lower for both positions (2142 and 2143), the eradication success rate was 90% or more. However, when the mutation rate was 20% or higher, the eradication success rate was lower (60%). CONCLUSIONS: The mutation rate of the CAM-resistance gene was related to the success of eradication therapy, as determined via pyrosequencing analysis.


Subject(s)
Coinfection , Helicobacter Infections , Helicobacter pylori , Humans , Clarithromycin/pharmacology , Clarithromycin/therapeutic use , Helicobacter pylori/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Helicobacter Infections/drug therapy , Prospective Studies , Coinfection/drug therapy , Drug Resistance, Bacterial , RNA, Ribosomal, 23S/genetics
9.
Arq Gastroenterol ; 61: e23110, 2024.
Article in English | MEDLINE | ID: mdl-38451664

ABSTRACT

BACKGROUND: Helicobacter pylori is an etiologic agent of gastroduodenal diseases. The microorganism, considered a type I carcinogen, affects about 50% of the global population. H. pylori virulence factors are determinant for the clinical outcome of the infection. The outer inflammatory protein A (oipA) gene encodes an outer membrane adhesin and is related to severe gastropathies, such as gastric cancer. OBJECTIVE: The aim of this study was to evaluate the association of the oipA gene with the severity of gastroduodenal diseases in dyspeptic patients in region Central Brazil. METHODS: The polymerase chain reaction (PCR) was used to determine the presence of H. pylori. Samples positives were used for molecular screening of the oipA gene. Gastropathies were categorized as non-severe and severe diseases. RESULTS: Approximately 68% of patients had H. pylori and 36% were infected with H. pylori oipA+ strains. Infection was significantly associated in patients aged over 44 years (P=0.004). However, there was no association between oipA and patients' age (P=0.89). Approximately 46% of patients infected with oipA+ strains had some severe illness. Gastric adenocarcinoma was the most frequent severe gastropathy. The H. pylori oipA genotype was inversely associated with the severity of gastroduodenal diseases (OR=0.247, 95%CI: 0.0804-0.7149 and P=0.007). CONCLUSION: The characterization of possible molecular markers will contribute to personalized medicine, impacting the prognosis of patients. BACKGROUND: • Evidence points to an association between the H. pylori oipA gene and gastropathies. BACKGROUND: • There is a high prevalence of H. pylori infection with a relevant percentage of oipA+ strains. BACKGROUND: • More severe gastropathies were observed in those infected with H. pylori oipA+ strains.


Subject(s)
Helicobacter pylori , Stomach Neoplasms , Humans , Aged , Helicobacter pylori/genetics , Virulence/genetics , Biomarkers , Genotype
10.
Arch Microbiol ; 206(4): 167, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38485861

ABSTRACT

Various forms of malignancies have been linked to Helicobacter pylori. Despite advancements in chemotherapeutic and surgical approaches, the management of cancer, particularly at advanced stages, increasingly relies on the integration of immunotherapy. As a novel, safe therapeutic modality, immunotherapy harnesses the immune system of the patient to treat cancer, thereby broadening treatment options. However, there is evidence that H. pylori infection may influence the effectiveness of immunotherapy in various types of cancer. This association is related to H. pylori virulence factors and the tumor microenvironment. This review discusses the influence of H. pylori infection on immunotherapy in non-gastrointestinal and gastrointestinal tumors, the mechanisms underlying this relationship, and directions for the development of improved immunotherapy strategies.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Neoplasms , Humans , Virulence Factors/genetics , Helicobacter pylori/genetics , Neoplasms/therapy , Immunotherapy , Helicobacter Infections/therapy , Tumor Microenvironment
11.
Environ Pollut ; 347: 123676, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38442821

ABSTRACT

Organochlorine (OC) and organophosphorus (OP) pesticides such as chlorpyrifos (CPF) and endosulfan (ES) have been associated with a plethora of adverse health effects. Helicobacter pylori (H. pylori) infection can lead to gastrointestinal diseases by regulating several cellular processes. Thus, the current study focuses on the effect of the co-exposure to pesticides and H. pylori on gastric epithelial cells. We have used the in-silico approach to determine the interactive potential of pesticides and their metabolites with H. pylori-associated proteins. Further, various in-vitro methods depict the potential of ES in enhancing the virulence of H. pylori. Our results showed that ES along with H. pylori affects the mitochondrial dynamics, increases the transcript expression of mitochondrial fission genes, and lowers the mitochondrial membrane potential and biomass. They also promote inflammation and lower oxidative stress as predicted by ROS levels. Furthermore, co-exposure induces the multi-nucleated cells in gastric epithelial cells. In addition, ES along with H. pylori infection follows the extrinsic pathway for apoptotic signaling. H. pylori leads to the NF-κB activation which in turn advances the ß-catenin expression. The expression was further enhanced in the co-exposure condition and even more prominent in co-exposure with ES-conditioned media. Thus, our study demonstrated that pesticide and their metabolites enhance the pathogenicity of H. pylori infection.


Subject(s)
Chlorpyrifos , Helicobacter pylori , Pesticides , Helicobacter pylori/genetics , Gastric Mucosa/metabolism , Chlorpyrifos/toxicity , Chlorpyrifos/metabolism , Virulence , Endosulfan/toxicity , Epithelial Cells , Pesticides/metabolism
12.
Genes (Basel) ; 15(3)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38540398

ABSTRACT

Helicobacter pylori (H. pylori) is associated with gastric inflammation and mucosal antibodies against its cytotoxin-associated gene A (CagA) are protective. Vaccine-elicited immunity against H. pylori requires MHC class II expression, indicating that CD4+ T cells are protective. We hypothesized that the HLA-DR genotypes in human populations include protective alleles that more effectively bind immunogenic CagA peptide fragments and susceptible alleles with an impaired capacity to present CagA peptides. We recruited patients (n = 170) admitted for gastroendoscopy procedures and performed high-resolution HLA-DRB1 typing. Serum anti-CagA IgA levels were analyzed by ELISA (23.2% positive) and H. pylori classified as positive or negative in gastric mucosal tissue slides (72.9% positive). Pearson Chi-square analysis revealed that H. pylori infection was significantly increased in DRB1*11:04-positive individuals (p = 0.027). Anti-CagA IgA was significantly decreased in DRB1*11:04 positive individuals (p = 0.041). In contrast, anti-CagA IgA was significantly increased in DRB1*03:01 positive individuals (p = 0.030). For these HLA-DRB1 alleles of interest, we utilized two in silico prediction methods to compare their capacity to present CagA peptides. Both methods predicted increased numbers of peptides for DRB1*03:01 than DRB1*11:04. In addition, both alleles preferred distinctively different CagA 15mer peptide sequences for high affinity binding. These observations suggest that DRB1*11:04 is a susceptible genotype with impaired CagA immunity, whereas DRB1*03:01 is a protective genotype that promotes enhanced CagA immunity.


Subject(s)
Gastritis , Helicobacter pylori , Humans , Helicobacter pylori/genetics , Antigens, Bacterial/genetics , Bacterial Proteins/genetics , HLA-DRB1 Chains/genetics , Cytotoxins , Gastritis/genetics , Genotype , Peptides/genetics , Immunoglobulin A/genetics
13.
mSystems ; 9(4): e0020624, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38514462

ABSTRACT

Helicobacter pylori is a highly successful pathogen that poses a substantial threat to human health. However, the dynamic interaction between H. pylori and the human gastric epithelium has not been fully investigated. In this study, using dual RNA sequencing technology, we characterized a cytotoxin-associated gene A (cagA)-modulated bacterial adaption strategy by enhancing the expression of ATP-binding cassette transporter-related genes, metQ and HP_0888, upon coculturing with human gastric epithelial cells. We observed a general repression of electron transport-associated genes by cagA, leading to the activation of oxidative phosphorylation. Temporal profiling of host mRNA signatures revealed the downregulation of multiple splicing regulators due to bacterial infection, resulting in aberrant pre-mRNA splicing of functional genes involved in the cell cycle process in response to H. pylori infection. Moreover, we demonstrated a protective effect of gastric H. pylori colonization against chronic dextran sulfate sodium (DSS)-induced colitis. Mechanistically, we identified a cluster of propionic and butyric acid-producing bacteria, Muribaculaceae, selectively enriched in the colons of H. pylori-pre-colonized mice, which may contribute to the restoration of intestinal barrier function damaged by DSS treatment. Collectively, this study presents the first dual-transcriptome analysis of H. pylori during its dynamic interaction with gastric epithelial cells and provides new insights into strategies through which H. pylori promotes infection and pathogenesis in the human gastric epithelium. IMPORTANCE: Simultaneous profiling of the dynamic interaction between Helicobacter pylori and the human gastric epithelium represents a novel strategy for identifying regulatory responses that drive pathogenesis. This study presents the first dual-transcriptome analysis of H. pylori when cocultured with gastric epithelial cells, revealing a bacterial adaptation strategy and a general repression of electron transportation-associated genes, both of which were modulated by cytotoxin-associated gene A (cagA). Temporal profiling of host mRNA signatures dissected the aberrant pre-mRNA splicing of functional genes involved in the cell cycle process in response to H. pylori infection. We demonstrated a protective effect of gastric H. pylori colonization against chronic DSS-induced colitis through both in vitro and in vivo experiments. These findings significantly enhance our understanding of how H. pylori promotes infection and pathogenesis in the human gastric epithelium and provide evidence to identify targets for antimicrobial therapies.


Subject(s)
Colitis , Helicobacter pylori , Animals , Humans , Mice , Bacterial Proteins/genetics , Antigens, Bacterial/genetics , Helicobacter pylori/genetics , Transcriptome/genetics , RNA Precursors/metabolism , Host-Pathogen Interactions/genetics , Sequence Analysis, RNA , RNA, Messenger/metabolism , Cytotoxins/metabolism
14.
J Bacteriol ; 206(4): e0040623, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38446058

ABSTRACT

The bacterial chemotaxis system is a well-understood signaling pathway that promotes bacterial success. Chemotaxis systems comprise chemoreceptors and the CheA kinase, linked by CheW or CheV scaffold proteins. Scaffold proteins provide connections between chemoreceptors and CheA and also between chemoreceptors to create macromolecular arrays. Chemotaxis is required for host colonization by many microbes, including the stomach pathogen Helicobacter pylori. This bacterium builds chemoreceptor-CheA contacts with two distinct scaffold proteins, CheW and CheV1. H. pylori cheW or cheV1 deletion mutants both lose chemoreceptor array formation, but show differing semisolid agar chemotaxis assay behaviors: ∆cheW mutants exhibit total migration failure, whereas ∆cheV1::cat mutants display a 50% reduction. On investigating these varied responses, we found that both mutants initially struggle with migration. However, over time, ∆cheV1::cat mutants develop a stable, enhanced migration capability, termed "migration-able" (Mig+). Whole-genome sequencing analysis of four distinct ∆cheV1::cat Mig+ strains identified single-nucleotide polymorphisms (SNPs) in hpg27_252 (hp0273) that were predicted to truncate the encoded protein. Computational analysis of the hpg27_252-encoded protein revealed it encoded a hypothetical protein that was a remote homolog of the PilO Type IV filament membrane alignment complex protein. Although H. pylori lacks Type IV filaments, our analysis showed it retains an operon of genes for homologs of PilO, PilN, and PilM. Deleting hpg27_252 in the ∆cheV1::cat or wild type strain resulted in enhanced migration in semisolid agar. Our study thus reveals that while cheV1 mutants initially have significant migration defects, they can recover the migration ability through genetic suppressors, highlighting a complex regulatory mechanism in bacterial migration. IMPORTANCE: Chemotactic motility, present in over half of bacteria, depends on chemotaxis signaling systems comprising receptors, kinases, and scaffold proteins. In Helicobacter pylori, a stomach pathogen, chemotaxis is crucial for colonization, with CheV1 and CheW as key scaffold proteins. While both scaffolds are essential for building chemoreceptor complexes, their roles vary in other assays. Our research reexamines cheV1 mutants' behavior in semisolid agar, a standard chemotaxis test. Initially, cheV1 mutants exhibited defects similar to those of cheW mutants, but they evolved genetic suppressors that enhanced migration. These suppressors involve mutations in a previously uncharacterized gene, unknown in motility behavior. Our findings highlight the significant chemotaxis defects in cheV1 mutants and identify new elements influencing bacterial motility.


Subject(s)
Escherichia coli Proteins , Helicobacter pylori , Bacterial Proteins/genetics , Helicobacter pylori/genetics , Agar , Chemotaxis/physiology , Chemoreceptor Cells , Membrane Proteins/genetics , Methyl-Accepting Chemotaxis Proteins/metabolism , Histidine Kinase
15.
BMC Cardiovasc Disord ; 24(1): 161, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491418

ABSTRACT

BACKGROUND: Helicobacter pylori (H. pylori), according to a number of recent observational studies, is connected to atherosclerosis (AS). However, the link between H. pylori and AS is debatable. METHODS: In order to calculate the causal relationship between H. pylori and AS, we employed a two-sample Mendelian randomization (MR) analysis. The data for H. pylori were obtained from the IEU GWAS database ( https://gwas.mrcieu.ac.uk/datasets/ ) and the data for AS were obtained from the Finngen GWAS database ( https://r5.finngen.fi/ ). We selected single nucleotide polymorphisms with a threshold of 5 × 10-6 from earlier genome-wide association studies. MR was performed mainly using the inverse variance weighted (IVW) method. To ensure the reliability of the findings, We performed a leave-one-out sensitivity analysis to test for sensitivity. F-value was used to test weak instrument. RESULTS: A positive causal relationship between H. pylori OMP antibody levels and peripheral atherosclerosis was shown by our two-sample MR analysis (odds ratio (OR) = 1.33, 95% confidence interval (CI) = 1.14-1.54, P = 0.26E-03) using IVW. Additionally, there was a causative link between coronary atherosclerosis and H. pylori VacA antibody levels (IVW OR = 1.06, 95% CI = 1.01-1.10, P = 0.016). All the F-values were above 10. CONCLUSIONS: This MR study discovered a causal link between H. pylori and AS. Different antibodies have different effects, so future researches are needed to figure out the exact mechanisms behind this link.


Subject(s)
Atherosclerosis , Helicobacter pylori , Humans , Helicobacter pylori/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Reproducibility of Results , Atherosclerosis/diagnosis , Atherosclerosis/genetics , Antibodies, Bacterial
16.
Ann Clin Lab Sci ; 54(1): 9-16, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38514066

ABSTRACT

OBJECTIVE: Gastrointestinal metaplasia (GIM) has a close relationship with gastric cancer (GC), but it is unclear how to judge which GIM could develop into GC. This study aimed to assess the role of CDX2 and its association with Helicobacter pylori (H.pylori) genotypes in GIM. METHODS: CagA and vacA genes were identified via PCR in 466 H. pylori-positive gastric tissues, including gastritis (n=104), GIM diagnosed endoscopically (GIM-1; n=82), gastric cancer (GC; n=173), and paired adjacent GIM tumors resected surgically (GIM-2; n=107). GIM was subclassified per the HID- AB pH2.5-PAS as follows: type I (n=23), type II (n=43), and type III (n=16) in GIM-1; type I (n=8), type II (n=40), and type III (n=59) in GIM-2. CDX2 expression was evaluated immunohistochemically. RESULTS: In GIM-1, the infection rate of vacAm2 (55.8%) and vacAs1m2 (53.5%) was higher in subtype II than in others (P<0.05), while that of vacAm1 (49.2%) and vacAs1m1 (33.9%) was higher in subtype III than in others. The cagA+ rate was higher in subtypes I (75.0%) and III (64.4%) than in subtype II (40.0%; P<0.05) respectively. CDX2 was upregulated in subtype I than in subtypes II and III in GIM-1 and GIM-2. In GIM-2 and GC, CDX2 was downregulated in vacAm1, vacAs1m1, and cagA+ (P<0.05). The predominant genotype was vacAs1m2 in subtype II of GIM-1, CDX2 expression remaining unaltered; however, the predominant genotype was cagA+ vacAs1m1 in subtypes II and III of GIM-2, negatively correlated with CDX2 expression. CONCLUSION: These GIM subtypes (cagA+ vacAs1m1 H. pylori-positive GIM with negative CDX2 expression) resemble GC and should be evaluated similar to cancerous GIM.


Subject(s)
CDX2 Transcription Factor , Helicobacter Infections , Helicobacter pylori , Stomach Neoplasms , Humans , Antigens, Bacterial/genetics , Bacterial Proteins/genetics , CDX2 Transcription Factor/genetics , Genotype , Helicobacter Infections/complications , Helicobacter Infections/genetics , Helicobacter pylori/genetics , Metaplasia/genetics , Metaplasia/complications , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism
17.
Acta Trop ; 252: 107137, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38364930

ABSTRACT

AIMS: The present study aimed to identify any potential association between IL-1ß and TNF-α gene polymorphism and the risk of Blastocystis infection as well as co-infection of Blastocystis with Helicobacter pylori (H.pylori). METHODOLOGY: A total of 314 stool samples were collected and examined microscopically for the detection of parasitic infection. DNA was extracted from all samples and utilized to identify Blastocystis molecularly. Positive samples were used for H. pylori detection by rapid tests and PCR. Moreover, we investigate polymorphism in the TNF-α gene at position -1031T/C, -308 G/A, and IL-1ß at position +3954C/T using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay. RESULTS: Out of the 314 stool samples, Blastocystis was detected in 93 (29.6 %); among them, 54 (58.1 %) had a mixed infection of Blastocystis with H. pylori. The TT genotype of the IL-1ß gene at position +3954 was significantly higher in Blasocystis-infected patients than in uninfected patients (17.2% vs. 6.3 %, P = 0.02), which might be considered a risk factor (OR = 3.2; CI =1.21-8.52). The TNF-α at position -1031 TT genotype was significantly higher in Blastocystis-infected patients than uninfected patients (44.1% vs. 10.8 %, P< 0.0001). The T allele (OR= 2.67; CI=1.51-4.72, P = 0.0008) might be considered a risk factor. The TNF- α at position -308 AA genotype is higher in Blasocystis infected than uninfected (17.2% vs 7.2 %, P = 0.03). TNF-α -308 AA (OR = 2.72; CI = 1.08-6.89) and A allele (OR= 1.46; CI= 0.797-2.66) might be considered risk factors. The TNF- α at position -308 G/A showed that the GG is the most frequent genotype in Blastocystis with H. pylori-positive patients with a significant association (P = 0.004), as well as the G allele (P = 0.02). The G allele (OR=1.924; CI= 1.071-3.454) might be considered a risk factor for co-infection of Blastocystis and H. pylori. CONCLUSION: SNPs (-1031 T/C and -308 G/A) of the TNF-α and (+3954 C/T) of the IL-1ß may be a useful marker in the assessment of the risk of Blastocystis infection, and TNF-α at position -308 G/A) may be a predictor for co-infection of Blastocystis with H. pylori.


Subject(s)
Blastocystis Infections , Blastocystis , Coinfection , Helicobacter pylori , Humans , Cytokines/genetics , Helicobacter pylori/genetics , Tumor Necrosis Factor-alpha/genetics , Blastocystis/genetics , Blastocystis Infections/epidemiology , Egypt , Genetic Predisposition to Disease , Genotype , Polymorphism, Single Nucleotide , Interleukin-1beta/genetics
18.
World J Gastroenterol ; 30(2): 184-195, 2024 Jan 14.
Article in English | MEDLINE | ID: mdl-38312120

ABSTRACT

BACKGROUND: Resistance to clarithromycin (CLA) and levofloxacin (LFX) of Helicobacter pylori (H. pylori) is increasing in severity, and successful eradication is essential. Presently, the eradication success rate has greatly declined, leaving a large number of patients with previous treatment histories. AIM: To investigate secondary resistance rates, explore risk factors for antibiotic resistance, and assess the efficacy of susceptibility-guided therapy. METHODS: We recruited 154 subjects positive for Urea Breath Test who attended The First Affiliated Hospital of China Medical University between July 2022 and April 2023. Participants underwent a string test after an overnight fast. The gastric juice was obtained and transferred to vials containing storage solution. Subsequently, DNA extraction and the specific DNA amplification were performed using quantitative polymerase chain reaction (qPCR). Demographic information was also analyzed as part of the study. Based on these results, the participants were administered susceptibility-guided treatment. Efficacy was compared with that of the empiric treatment group. RESULTS: A total of 132 individuals tested positive for the H. pylori ureA gene by qPCR technique. CLA resistance rate reached a high level of 82.6% (n = 109), LFX resistance rate was 69.7% (n = 92) and dual resistance was 62.1% (n = 82). Gastric symptoms [odds ratio (OR) = 2.782; 95% confidence interval (95%CI): 1.076-7.194; P = 0.035] and rural residence (OR = 5.152; 95%CI: 1.407-18.861; P = 0.013) were independent risk factors for secondary resistance to CLA and LFX, respectively. A total of 102 and 100 individuals received susceptibility-guided therapies and empiric treatment, respectively. The antibiotic susceptibility-guided treatment and empiric treatment groups achieved successful eradication rates of 75.5% (77/102) and 59.0% (59/411) by the intention-to-treat (ITT) analysis and 90.6% (77/85) and 70.2% (59/84) by the per-protocol (PP) analysis, respectively. The eradication rates of these two treatment strategies were significantly different in both ITT (P = 0.001) and PP (P = 0.012) analyses. CONCLUSION: H. pylori presented high secondary resistance rates to CLA and LFX. For patients with previous treatment failures, treatments should be guided by antibiotic susceptibility tests or regional antibiotic resistance profile.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Humans , Clarithromycin/pharmacology , Clarithromycin/therapeutic use , Levofloxacin/therapeutic use , Helicobacter pylori/genetics , Helicobacter Infections/diagnosis , Helicobacter Infections/drug therapy , Drug Therapy, Combination , Anti-Bacterial Agents/therapeutic use , Urea , DNA , Treatment Outcome , Amoxicillin/therapeutic use , Drug Resistance, Bacterial
19.
Antimicrob Agents Chemother ; 68(4): e0167923, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38386782

ABSTRACT

The increasing antibiotic resistance of Helicobacter pylori primarily driven by genetic mutations poses a significant clinical challenge. Although previous research has suggested that antibiotics could induce genetic mutations in H. pylori, the molecular mechanisms regulating the antibiotic induction remain unclear. In this study, we applied various techniques (e.g., fluorescence microscopy, flow cytometry, and multifunctional microplate reader) to discover that three different types of antibiotics could induce the intracellular generation of reactive oxygen species (ROS) in H. pylori. It is well known that ROS, a critical factor contributing to bacterial drug resistance, not only induces damage to bacterial genomic DNA but also inhibits the expression of genes associated with DNA damage repair, thereby increasing the mutation rate of bacterial genes and leading to drug resistance. However, further research is needed to explore the molecular mechanisms underlying the ROS inhibition of the expression of DNA damage repair-related genes in H. pylori. In this work, we validated that ROS could trigger an allosteric change in the iron uptake regulatory protein Fur, causing its transition from apo-Fur to holo-Fur, repressing the expression of the regulatory protein ArsR, ultimately causing the down-regulation of key DNA damage repair genes (e.g., mutS and mutY); this cascade increased the genomic DNA mutation rate in H. pylori. This study unveils a novel mechanism of antibiotic-induced resistance in H. pylori, providing crucial insights for the prevention and control of antibiotic resistance in H. pylori.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Humans , Helicobacter pylori/genetics , Helicobacter pylori/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Reactive Oxygen Species/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , DNA, Bacterial/metabolism
20.
Article in English | MEDLINE | ID: mdl-38346161

ABSTRACT

Most gastric cancers (GC) are thought to be caused by Helicobacter pylori (H. pylori) infections. However, there is mounting evidence that GC patients with positive H. pylori status have improved prognoses. The H. pylori-induced cellular immune reaction may inhibit cancer. In this study, BALB/c mice were immunized using recombinant plasmids that encode the ureF gene of H. pylori. Purified functional splenic CD3+ T lymphocytes are used to study the anticancer effects in vitro and in vivo. The immunological state of GC patients with ongoing H. pylori infection is mimicked by the H. pylori DNA vaccines, which cause a change in the reaction from Th1 to Th2. Human GC cells grow more slowly when stimulated CD3+ T lymphocytes are used as adoptive infusions because they reduce GC xenograft development in vivo. The more excellent ratios of infiltrating CD8+/CD4+ T cells, the decreased invasion of regulatory FOXP3+ Treg lymphocytes, and the increased apoptosis brought on by Caspase9/Caspase-3 overexpression and Survivin downregulation may all contribute to the consequences. Our findings suggest that in people with advanced GC, H. pylori pIRES2-DsRed-Express-ureF DNA vaccines may have immunotherapeutic utility.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Luminescent Proteins , Stomach Neoplasms , Vaccines, DNA , Animals , Mice , Humans , Helicobacter pylori/genetics , Stomach Neoplasms/therapy , Lymphocytes , Immunotherapy , Helicobacter Infections/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...